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ABSTRACT 

We show tha t  if p is prime and A is a sum-free subset  of Z/pZ with 

n :-- IAI > 0.33p, then A is contained in a dilation of the interval [n,p-n] 
(mod p). 

1. I n t r o d u c t i o n  

A subset A of an abelian group is said to be s u m - f r e e  if al + a2 -- a3 with 

al ,  a2, a3 C A is impossible; that  is, if the equation x + y = z has no solutions in 

the elements of A. To our knowledge, sum-free sets were introduced by Schur 

whose celebrated result (considered now one of the origins of the Ramsey theory) 

is that  the set of positive integers cannot be parti t ioned into finitely many sum- 

free sets. Further study of sum-free sets was motivated to a large extent by a 

famous conjecture of Cameron and Erd6s, recently settled by Green [G04]. We 

refer the reader to [GR05, K98, L03, LLS01, WSW72] for an extended historical 

account, current s tate of the art,  and the background motivating one's interest 

in sum-free sets. 

How large can a sum-free subset of a finite abelian group be? For some groups 

the answer has been known for over 35 years, see [DY69, RS70, Y72, Y75]; how- 

ever, for a number of particularly "tough" groups the problem remained open 

until the recent paper by Green and Ruzsa [GR05]. Much effort has also been 

made to determine the structure of sum-free subsets of the maximum possi- 

ble size; for numerous results of this sort and further references see [WSW72]. 

On the other hand, there were ahnost no a t tempts  to advance further and to 

Received October 11, 2004 

221 



222 V.F. LEV Isr. J. Math. 

study sum-free subsets of size close to the maximum possible. We mention 

two exceptions. One is the remarkable paper by Davydov and Tombak [DT89], 

well-known to coding theorists and experts in finite geometries. As shown in 

[DT89], any sum-free subset A of the elementary abelian 2-group of rank r _> 4, 

such that  IAI > 5 �9 2 r-4,  is contained in a proper coset. Another exception is 

[L05] where a result of this sort is established for elementary abelian 3-groups. 

Similar in its spirit is the problem of classifying large integer sum-free subsets 

of the interval [1, n]; see [F92, DFST99]. 

2. T h e  m a i n  r e su l t  

In the present paper we consider the problem for cyclic groups of prime order 

which, following the number-theoretic tradition, are understood as the quotient 

groups Z/pZ.  

It is not difficult to prove that  if A C Z /pZ  is sum-free, where p _> 2 is a 

(not necessarily prime) integer, then tAI < [(p + 1)/3]. This is best possible as 

one verifies easily considering appropriate intervals. More precisely, let ~p: Z --* 

Z/pZ denote the canonical homomorphism and for a set S C_ Z write 8p := 

~p(S), the image of S under ~p. (Here S can be substituted by a letter or 

any notation, customarily used for integer sets.) Then for a :-- [(p + 1)/3] the 

set [a, 2a - 1In is sum-free. Moreover, any subset of [a, 2 a -  lip is sum-free, as 

well as any dilation of such a subset by a factor, co-prime with p. The aim of 

this paper is to establish the following result showing that  if p is prime and a 

sum-free subset A C_ Z/pZ is large, then A has the structure close to that just 

described. 

THEOREM 1: Let p be a prime and suppose that A C_ Z /pZ is sum-free. I f  n :-- 

IAI > 0.33p, then there exists an integer d such that A C_ {dz: z E [n,p - n]p}. 

We notice that  the interval [n,p - n]p contains n + (p + 1 - 3n) elements 

of Z/pZ,  so that  the set A of Theorem 1 is actually a very dense subset of a 

dilation of this interval. 

What  makes Theorem 1 non-trivial is that  0.33 < 1/3. The constant 0.33 is 

merely an artifact of our method, and it would be interesting to replace it with 

a smaller value. It is not quite clear to us how far can one go in this direction, 

though we have an example showing that  it cannot be reduced to below 0.2. In 

contrast, the interval [ n , p -  nip is best possible, as we proceed to explain. 

Given a subset A of an abelian group we write 

2A := {al + a2: al ,  a2 c A} 
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(the s u m s e t  of A), 

A -  A := {al - a 2 : h i , a 2  E A} 

(the d i f f e r e n c e  s e t  of A), and 

d *  A := {da: a C A} 

(the d i l a t i o n  of A by the  factor  d C Z). 

Example 1: For a pr ime p and a posit ive integer a < (p + 1)/4 let 

(1) A := [a, 2a - 1]p U ~o - 2a § 1,p - a]p 

so tha t  the  cardinal i ty of A is n := 2a and 

(2) 2A=[2a,  4 a - 2 ] p U [ p - a + l , p + a - 1 ] p U [ p - 4 a + 2 , p - 2 a ] p .  

If a < (p + 1)/6 then  the  intervals in (1) are disjoint wi th  those in (2), hence A 

is sum-free. Fur thermore ,  

2 .  A = {2a, 2a + 2 , . . . , 4 a -  2}p U { p -  4a § 2 , p -  4a + 4 , . . .  , p -  2a}p 

whence 2 �9 A c [n,p - nip and, moreover,  2 * A is not contained in a proper  

subinterval  of [n,p - n]p. Finally, we show tha t  if a > (p + 3) /8  then  d * A % 

[n, p - nip for any d c [3, p - 3]. It  suffices to  prove t ha t  

(3) (d * [a, 2a - 1]p) M [ - 2 a ,  2alp = Z 

does not  hold for 3 < d < (p - 1)/2. For d = 3 this is immedia te  f rom p - 2a 

3 ( 2 a - 1 )  < p + 2 a .  F o r d > 4 w e h a v e  

p + 3  
d <  ~ - 2  _< 4 a - 2  < ( 2 a +  1 ) -  ( - 2 a -  1). 

Thus  if (3) were t rue  then,  taking into account  t ha t  d * [a, 2a - lip is tile image 

under ~p of an ar i thmet ic  progression with  the  difference d between consecutive 

elements,  we would conclude tha t  

( 2 a -  1 ) d -  ad <_ ( p -  2 a -  1) - ( 2 a §  1) = p -  4 a -  2. 

Equivalently, 
( a -  1)d < p -  6 -  4 ( a -  1), 

(a - 1)(d + 4) _< p - 6, 

and it would follow tha t  a < (p - 6) /8  + 1 < (p + 3)/8,  cont ra ry  to  the assump-  

tions. 
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We now turn  to the  proof  of T h e o r e m  1. Our  a rgument  involves two parts .  

First ,  charac ter  sums are used to  show tha t  there  is a dilation of A with unpro-  

por t ional ly  m a n y  elements  in an interval  of the  form [u, u+p/2)p.  The  s tandard  

tool  to  derive a conclusion of this kind is a classical l emma  of Fre iman [F62, 

L e m m a  1], bu t  unfor tuna te ly  the  es t imate  it yields is too weak for our purposes.  

For this reason we use [L, Corol lary 2] instead,  gaining a vi tal  improvement  in 

the  constants .  Secondly (and this is where the  major  difficulty lies), a combi- 

nator ia l  a rgument  is employed to  show t h a t  if u is sui tably  chosen, then  in fazt 

the  whole set A is contained in [u ,u+p/2)p  and,  moreover,  A C In, p - n i p .  The  

proof  is presented in Section 4; several auxil iary results are gathered in the  next  

section. 

3.  T h e  t o o l s  

We s ta r t  wi th  three  l emmas  dealing wi th  the  s t ruc ture  of the  difference set A - A  

for the  case where A is a dense set of integers. 

LEMMA 1: Let n and 1 be positive integers satisfying I < 2n - 2 and suppose 

that A C__ [0, l] is a set of integers such that IAI = n. Then 

[ - ( 2 n  - 2 - l), 2n - 2 - l] C A - A. 

Proo~ I f  g > 0 is an integer wi th  g ~t A - A then  A N (g + A) = O and bo th  

A and g + A are contained in [0, l + g], whence l + g + 1 > 2n by the  boxing 

principle and therefore g > 2n - 1 - l. By  symmet ry ,  if g < 0 is an integer wi th  

g ~ A - A, then  in fact g <: - ( 2 n  - 1 - 1). II 

LEMMA 2: Let n and I be positive integers satisfying 1 ~ 2n - 2 and suppose 

that A C [0, l] is a set  of integers such that tAt = n. Then for any integer k ~_ 1 

we h~ve 

k ' C _ A - A .  

Proof'. Fix  an integer g > 0 and for j E [0,g - 1] consider the ar i thmet ic  

progression Pj := { j , j  § g , . . .  , j  § (2k - 1)g). If  g ~ A - A then  of any two 

consecutive elements  of each Pj at  most  one belongs to  A so t ha t  IPj N A I < k, 

implying I A A [ 0 , 2 h g -  1]1 < kg. I f l  ~ 2 k g -  1 this gives n < hg whence 

g > n/k;  if I > 2kg then  one derives easily t h a t  n < kg ~- (l § 1 - 2kg) whence 

g < (l § 1 - n) /k .  In  any case, g does not fall into the  "forbidden" interval 

( ( l  - n + 1 ) / k ,  n/k). | 
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LEMMA 3: Let n and 1 be positive integers and suppose that A C_ [0, l] is a set 
of integers such that IAI = n. Is < 2~---Al n - 1 with an integer k >_ 2, then 

( _n n ) c A _ A .  
k l ' k - 1  - 

Proo~ This follows from Lemma 2 and the observation tha t  if ~ > k then 

l < 2 - ~ - 1 n -  1 which is equivalent to  n > l--nq-1 I 

It  can be shown tha t  Lemmas I - 3  are best  possible in the sense tha t  the 

intervals of these lemmas cannot  be extended. 

Our  next lemma is the "difference version" of a well-known result of Freiman; 

it follows readily, for instance, from [LS95, Theorem 2]. 

LEMMA 4: Let I and n be positive integers and suppose that A C_ [0, l] is a set 

of integers such that [A] = n, 0 E A, 1 E A, and gcd(A) -- 1. Then 

[A - A[ >_ m i n { / +  n, 3n - 3}. 

We notice tha t  Lemmas  1-3 remain valid if A is a subset of Z / p Z  (rather  than  

Z), the condition A C_ [0, l] is replaced by A C_ [u, u+l]p with integer u and 1 < p, 

and the intervals in the conclusions of the lemmas are replaced with their images 

under ~p. Similarly, the est imate of Lemma 4 remains valid if A C_ [u, u + lip 

with integer u and l < p/2 and given tha t  the set ~ p l ( A )  N [u,u + l] is not  

contained in an ar i thmetic  progression of length smaller than  l. 

We finish this section with a reformulation of [L, Corollary 2]. We use the 

s tandard  notat ion ep(z) = exp(2~riz/p) where p is a positive integer and z is 

either an integer or an element of Z/pZ.  

LEMMA 5: Let p be a positive integer and suppose that A C_ Z/pZ.  Write 

n :=  IAI and S : =  EaEA ep(a). Then there exists an integer u such that 

n p ( sin ~r) IAN[u ,u+p/2)p[>_-~+~-~arcs in  IS] p / .  

4. P r o o f  o f  T h e o r e m  1 

We break the proof  into a number  of steps. 

1) If p < 100 then n > 0.33p > ( p -  1)/3 whence in view of 2A N A = O we 

have 12AI _< p - n < 2n. Thus  12AI < 2n - 1 and by a well-known theorem of 

Vosper, A is an ari thmetic progression; replacing it with a suitable dilation we 

can write A = [u, u + n - lip, with an integer 0 < u < p - n. One now verifies 

easily tha t  the fact tha t  A is sum-free implies u > n and u + n - 1 <_ p - n, 
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concluding the proof in this special case. For the rest of the proof we assume 

that  p > 100. 

2) Define c~ > 0.33 by n = ap and for integer z write .4(z) := ~~aeA ep(aZ); 
thus A(z) are the Fourier coefficients of the indicator function of A. Since A is 

p - 1  sum-free we have ~z=O "4(z)lA(z)]2 __ 0 whence using the Parseval identity we 

obtain 

p--I p--I  

n 3 < ~ l A ( z ) l  3 < max 1.4(z)l-~l.A(zl{ 2 = n ( p - n )  max I,'4(z){. 
l<z<p- -1  l<z<p--1  

z = l  z = l  

Dilating A as necessary, we can assume that  

n 2 
}A(1)I > 

p--n 

c~ 2 
,p 

and then by Lemma 5 there is an integer u such that  the interval [u, u § p/2)p 
contains at least 

(4) 
n p ( p )  (ol 1 ( a 2 p ) )  

_ p sin p + arcsin 1.4(1)I sin > ~ § ~ arcsin 1 - c~ 

elements of A. 
Set Ao :-- A n [u,u +p/2)p  and no :-- IA0] and write the right-hand side of 

(4) as g(o~,p)p. Since p > 100 (see Step 1) and c~ > 0.33 and since g(c~,p) is an 

increasing function of both c~ and p, we have 

no > g(0.33, 100)p > 0.25p. 

3) We have shown that  there are integer u and 0 < l0 < p/2 such that, letting 

Ao := A n [u,u + loin, we have no := IAoI > 0.25p. Without loss of generality 

we can assume that,  moreover, 

(i) no >_ I A N [u', u' + p/2)p I for any integer u'; 

(ii) u, u + l0 E A0 (to simplify the notation we occasionally identify integers 

with their images under ~ap); 

(iii) 0 < u < p ;  

(iv) ~a~ 1 (A0)O [u, u +/0] is not contained in an arithmetic progression of length 

smaller than 10. 
We notice that  (iv) follows from the observation that  A can be replaced with 

its dilations, and that (i) implies 

(5) A n (u + lo - p/2,  U)p = A n (u + lo, u + p/2)p = 0.  
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4) Set 6 := IA \ ( - A ) I .  Since A is sum-free we have 

A n  ( A -  A) = ( - A )  n ( A -  A) = ;~ 

and hence 

(6) 
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and hence 

(10) ( no n o )  C A o - A o  
3 ' 3  ~ -  

by L e m m a  3 as applied with  k = 4. 

5) We observe t ha t  to complete  the  proof  it suffices to  show t h a t  

3 
(11) lo < ~no - 1. 

Indeed, if this holds then  ( - n o ,  no)p c_ Ao - Ao by L e m m a  3 whence 

A C [no,p - no]p C (p/4, 3p/4)p 

7 7 7 
< ~no - (0.33 § 11.0.252 - 1)p = ~no - 0.0175p < ~no - 1 

n + 6 :  IA u ( - A ) [  ~ p - [ A - A I  <_p-IAo-Ao[. 

To es t imate  IAo - Aol we apply  L e m m a  4 (see also the  r emark  following the  

lemma);  this gives 

p - n - 5 _> IAo - Ao[ _> min{/o -t- no, 3no - 3}. 

Assuming lo _> 2no - 3 we then  obta in  

p _> n -t- 5 -t- 3no - 3 > (0.33 + 3 .0 .25 )p  - 3 = 1.08/9 - 3, 

contradict ing the  assumpt ion  p > 100. Thus  

(7) lo < 2no - 4, 

(8) IAo - Aol _> lo + no, 

and p - n - 6 > lo + no whence 

( 9 )  lo _< p - n - n o  - 5 .  

Notice t ha t  this gives 

l o _ < p - n - n o = ~ n o -  n + - ~ - n o  



228 v .F .  LEV Isr. J. Math. 

(as A is disjoint with Ao - Ao) and therefore Ao = A by assumption (i) of 

Step 2. This gives no = n and A C_ [n ,p  - nip, as required. 

6) We claim that 

(12) 0 • [u, u +/olp; 

for otherwise Ao and Ao - Ao are disjoint subsets of [-/o, Io]p so that  

2/o + 1 ~ IAol + I A o -  Aol _> lo + 2no 

by (8), contradicting (7). On the other hand, modifying slightly (6) and using 

the Cauchy-Davenport inequality we can write 

IAo t2 (-Ao)l  _ < p -  I A -  AI <_ P -  ( 2 n -  1) < 2no = IAol + I - Aol 

(notice that  2n+2no  > 2(0.33+0.25)p = 1.16p > p + l ) ,  hence A o A ( - A o )  ~ 0 .  

Along with (12) and assumption (iii) of Step 3 this shows that  

(13) 0 < u < p / 2  < u + l o  < p  

and our next claim is that  

(14) p / 4  < u < p / 2 .  

For a contradiction, suppose that  0 < u < p / 4 .  As 

lo + 1 - n o  <_ p / 4  - (n  + 2no - 3p/4) + 1 

< p / 4  - (0.33 + 2.0.25 - 0.75)p + 1 = p / 4  - 0.08p + 1 < p / 4  

by (9) and the assumption p > 100 and since 

(lo + 1 - n o , p / 4 ) p  C_ (Io + 1 - n o , n o ) p  C_ Ao - Ao 

by Lemma 2, we have then u < lo + 1 - no in view of u E Ao. Furthermore, 

writing 

[u, p /4 )p  = [u, lo + 1 - no]p U (4 + 1 - n0, p /n )p  

and 

( 3 p / 4 , p  - U]p = ( 3 p / 4 , p  - (lo + 1 - no)In U (p - (lo + 1 - n o ) , p  - U]p 

we obtain 

(15) 

(16) 

IA ~ [u ,p /4)p l  <_ lo + 2 - no - u, 

IA n ( 3 p / 4 , p  - U]p I <_ lo + 2 - no - u. 
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IA n @/4, 3p/4)pl <_ no, 
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by Step 3, assumption (i). Adding together (15), (16), and (17) we obtain 

(18) IAo U ( - A o ) l  <_ IA N [u,p - u]p I + 5 <_ no + 2(/o + 2 - no - u) + 5. 

On the other hand, since Ao N ( - A o )  C_ ~ - u - lo, u + lo]p (as follows from 

(13)), we have 

(19) IAo A (-Ao)l  _< (u + lo) + 1 - (p - u - lo) 

in a trivial way. Summing up (18) and (19) we get 

2no < (2/o + 4 -  no - 2 u +  5) + ( 2 u +  2/o + 1 - p ) ,  

that is 3n0 + p _< 4/o + 5 + & Taking into account (9) we derive that  

3p + 5 _> 7no + 4n > (7- 0.25 + 4 .0 .33)p = 3.07p 

which contradicts the assumption p > 100. 

Thus (14) is established and by symmetry (more precisely, since A can be 

replaced by - A  and u by p - u - lo in the above argument) we also have 

u + lo < 3p/4.  Comparing with (13) we obtain 

(20) p / 4  < u < p / 2  < u + lo < 3p/4 .  

7) If lo < p / 3  then lo /no < 4/3 whence 

3 1 3 
lo < ~ n o - ~ n o <  ~ n o - 1  

so that  (11) holds true and the proof is over. Suppose now that  

(21) lo > p/3 .  

By (5) we have A \ Ao C_ (u - p /2 ,  u + lo - p / 2 ) p  and we represent A \ Ao as 

a disjoint union A1 U A2 U Aa where 

A1 := A c? (u - p / 2 , p  - 2/o - U)p, 

(22) A2 := A N[p - 2/o - u, lo - U]p, 

A3 := A N (lo - u, u + lo - p /2 )p .  
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(Observe t ha t  A1 and A3 are well-defined as u - p /2  < p - 2/o - u and lo - u < 

u + lo - p / 2  by (20), and A2 is weU-defined as p - 2/o - u < lo - u by (21).) We 

have 

u + A 3 C ( l o , 2 u + l o - p / 2 ) p ,  ( u + l o ) + A 1 C ( 2 u + / o - p / 2 , p - l o ) p  

so t h a t  the four sets A o - A o  C_ [-/o,/O]p, u+A3,  (u+lo)+A1,  and A are pairwise 

disjoint and therefore 

p _> IAll + [A31 + IAo - Ao[ + [A[ >_ IAlt + 1A3t + (lo + no) + n = lo + 2n - IA21 

by (8). Consequently,  

(23) 

8) We now claim tha t  

(24) 

Assuming this is wrong,  let 

I n  3 / o - n o + i ]  (25) I := , 2 p 

these intervals are well-defined as 

[A2] _> lo + 2n - p. 

5 
lo < : n o  - 1. 

3 

and J : =  [ 2 , 1 o - n o + l ] p ;  

( 5 ) / o - n o + l  no _ 1 / o - ~ n o + l  > 0  
2 3 2 - 

and 

no 3 
(26) ( l o - n o + l ) - - ~ = l o - ~ n o + l > 0 .  

Since ((lo - no + 1)/2,no/2)p,  (lo - no + 1,no)p c_ Ao - Ao by L e m m a  2 and 

taking into account  (10) we get 

As C A ~ ( - p / a , p / 4 ) p  c__ ( - J )  tA ( - I )  U I U J, 

with A2 defined by (22). 

We dist inguish two cases. First ,  suppose  t ha t  bo th  intervals - J  and J contain 

elements  of A2. Since A2 contains no elements  in the  "gaps" between - J ,  - I ,  I ,  

and J ,  and is itself contained in an interval of length (lo - u) - (p - 2lo - u), 

we have in this case 

(lo - u ) +  1 - ( p -  2/o - u ) -  2 ( 2 0  

8 
= 4/o - xno - P +  5. 

l o - n o + l  1) _ (2. no _1)  
2 T 
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Comparing with (23) we get 

8 
lo + 2 n - p  < 4/o - ~ n o - p + 5 ,  

8 
2 n +  =no < 3/o + 5 

whence by (9) 

17 
3p + 5 > 5n + -~-n0 > (5- 0.33 + (17/3).  0.25)p > 3.06p, 

contradicting the assumption p > 100. 

Now suppose that at least one of the intervals - J  and J contains no elements 

of A2; say, A2 n ( - J )  = O. Since for any a C A2 n I we have 2a E J \  A2, it 
follows that 

3 
IA2 N I I + [A2 N J] < IJ] _< l0 - ~n0 + 2 

and hence 

IA21 = l& n (-I)1 + ]& n i l  + IA2 n Yl 
<(lo-no+lno ) (  3 ) 
- 2 3 + 1  + / 0 - ~ n 0 + 2  

3/o - 7 7 5no + 7" 

Combining this with (23) and (9) we get 

7 Z 
l o + 2 n - p _ <  ~ l o - ~ n o + 2 ,  

14 
4 n +  y n o  _< lo + 2 p +  7, 

17 
3p + 7 _> 5n + -~-no. 

Since no > (p + 1)/4 we derive that 

3p + 7 > (5.0.33 + (17/3).  0.25)p + (17/12) > 3.06/) + 1, 

a contradiction again. This proves (24). 

9) We are now in a position to establish (11), completing the proof of 

Theorem 1. Suppose that (11) does not hold and define then J as in (25); 

computation (26) shows that this definition is correct. By (24) and Lemma 3, 

we h a v e  ( no ?)  
2 '  v -  
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and by Lemma 2, 

(to - no  + 1, no  )p c A o  - Ao. 

These two inclusions along with the definition of J show that  

A2 C_ A N ( - p / 4 , p / 4 ) p  c_ ( - J )  t2 J. 

On the other hand, A2 is contained in an interval of length 

(10 - ~ )  - ( p  - 210 - 4 )  = 310 - p < (to - n 0  + 1)  - ( - n 0 / 2 )  

(an easy verification based on (9) is left to the reader), hence 

3 
]A2[ <_ [g] <_ lo - ~no + 2 

which by (23) and (9) implies 

3 
Io + 2 n - p  <_ l o -  ~no + 2, 

3 
p +  2 > 2 n +  ~n0 > (2 .0 .33+  (3/2).0.25)p = 1.035p, 

a contradiction proving (11). 
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